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Abstract. A central problem in population ecology is to use time series data to estimate
the form of density dependence in the per capita growth rate (pgr). This is often accomplished
with phenomenological models such as the theta-Ricker or generalized Beverton-Holt. Using
the theta-Ricker model as a simple but flexible description of density dependence, we apply
theory and simulations to show how multimodality and ridges in the likelihood surface can
emerge even in the absence of model misspecification or observation error. The message for
model fitting of real data is to consider the likelihood surface in detail, check whether the best-
fit model is located on a likelihood ridge and, if so, evaluate predictive differences of
biologically plausible models along the ridge. We present a detailed analysis of a focal data set
showing how multimodality and ridges emerge in practice for fits of several parametric
models, including a state–space model with explicit accommodation of observation error.
Best-fit models for these data are biologically dubious beyond the range of the data, and
likelihood ratio confidence regions include a wide range of more biologically plausible models.
We demonstrate the broad relevance of these findings by presenting analyses of 25 additional
data sets spanning a wide range of taxa. The results here are relevant to information-theoretic
and Bayesian methods, which also rely on likelihoods. Beyond presentation of best-fit models
and confidence regions around individual parameters, effort toward understanding features of
the likelihood surface will help ensure the most robust translation from statistical analysis to
biological interpretation.

Key words: Accipiter nisus; biological plausibility; density dependence; generalized Beverton-Holt; per
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INTRODUCTION

Determining the effect of density on the per capita

growth rate (pgr) loge(Ntþ1/Nt), whereNt is the density of

the population at time t, has critical implications for

population ecology theory (May and Oster 1976),

conservation biology (Ginzburg et al. 1990, Sæther et

al. 2000), and resource management (Getz and Haight

1989, Sæther et al. 1996, Myers et al. 1999, Aanes et al.

2002). One theoretical prediction about the form of the

pgr suggests that it is sigmoidal over a broad range of

densities, and convex upward for values near and below

the expected density (Getz 1996). The recent availability

of relatively long-term data time series has allowed tests

of such theory. Notable among these is the report of

Sibly et al. (2005) on fitting the theta-Ricker model to

1780 time series from the Global Population Dynamics

Database (GPDD) (maintained by the National Envi-

ronment Research Council [NERC] Center for Popula-

tion Biology). They conclude that the effects of density

on the pgr are often concave, implying density depen-

dence sets in most strongly well below the long-term

expected density for a majority of species. If true, this

finding has dramatic implications for wildlife manage-

ment and conservation, as well as for fundamental

ecological theory (Reynolds and Freckleton 2005).

There have been many theoretical models of the pgr

motivated by natural systems that include, for example,

the effects of age structure (Ellner and Turchin 1995),

Allee effects, ormultiple species (Turchin 2003).Omission

of such effects has recognized consequences leading to

erroneous conclusions regarding the role of density

dependence in population dynamics (Turchin 1990,

Wolda and Dennis 1993). For many species, however,

such omissions are appropriate: fitting relatively simple

models is often a first step when assessing the dynamic

properties of the density-dependent feedback on popula-

tion growth and ameans for obtaining amodel that can be

used to predict the population growth response at

different population densities (Dennis and Taper 1994).

In this paper, we emphasize the importance of

thoroughly investigating the likelihood surface produced
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from fitting density-dependent pgr models. Using the

theta-Ricker model as a simple but flexible description

of density dependence, we use theory and simulations to

show how multimodality and ridges in the likelihood

surface can emerge even in the absence of model

misspecification or observation error. Our analysis

indicates that when fitting models to empirical data,

one should consider the likelihood surface in detail,

check for ridges containing the best-fit model, and, if

they exist, evaluate predictive differences of other

biologically plausible and statistically supported models

along these ridges. We illustrate these ideas with several

different pgr models to an Accipiter nisus (Sparrow-

hawk) time series obtained from the GPDD; the general

issue of multimodality and ridges is shown to exist in 25

additional data sets spanning a wide range of taxa. We

discuss the implications of our results for biological

inference, including model selection and Bayesian

methods, and for the claim by Sibly et al. (2005) that

many populations exhibit ‘‘a strongly concave relation-

ship between a population’s growth rate and its size.’’

STOCHASTIC PGR MODELS AND PARAMETER ESTIMATION

The framework we use for estimating the parameters

of a pgr model, g(N ), is the prediction equation

loge(Ntþ1) ¼ loge(Nt) þ g(Nt) þ tt, where the process

noise tt is assumed to be a sequence of independent,

identically distributed (iid) values drawn from a normal

distribution (e.g., Dennis and Taper 1994) with zero

mean and standard deviation rp. Accounting for

observation error in addition to process noise with real

density time series can be informative (de Valpine and

Hastings 2002, de Valpine and Hilborn 2005, Dennis et

al. 2006, Sæther et al. 2007, Lillegard et al. 2008), and we

accommodate this level of stochasticity using a state–

space model (Eq. A.4) with an iid normal random

variable et with zero mean and standard deviation ro for

observation error (see Appendix: sections A2 and A4).

Formulations of all models (likelihood functions) used

in a maximum likelihood (ML) analysis to obtain best-

fit parameter estimates and construct confidence regions

are given in the Appendix (Eqs. A.1–A.4). Throughout,

we denote the vector of model parameters by H, the

maximum likelihood estimated parameters by Ĥ, and

the value of the log-likelihood function at H by ‘(H).

Consider the log-transformed theta-Ricker pgr model

(Thomas et al. 1980) g(Nt) ¼ r(1 � (Nt/K )h ), where r is

the maximum of a pgr that declines to 0 as population

density increases to K . 0 (where K is the population

density for which the pgr is zero) and h describes the

form of the density dependence (Fig. 1A). Fixing h ¼ 1

FIG. 1. (A) Theoretical per capita growth rate (pgr) curves
given by the theta-Ricker model for different values of h and a
specific but arbitrary r . 0 (r is the maximum of a pgr that
declines to 0 as population density increases to K . 0; h
describes the form of the density dependence). The curve
associated with the negative value of h uses r0¼�r. (B, C) Gray
points show ML (maximum likelihood) estimates (r̂, ĥ) from a
theta-Ricker model fit to 300 simulated stationary time series of
length 20 generated by the theta-Ricker with process noise
(TRPN) model, with generating parameters r¼ loge(1.2) and h
¼2 located at the plus sign. In (B), estimates are allowed to take
on any value, and for clarity 247 (82%) of these pairs are

 
shown, with the remaining pairs lying along the axes outside the
boundaries of the graph. In (C), the r and h estimates are
restricted to be positive, and a log–log scale is used. However,
the hyperbolic-shaped ridge (negative linear shape on a log–log
scale) of similar likelihood values remains.
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produces the widely used Ricker model. Fig. 1A shows

how different regions of the r–h parameter space

describe comparable pgr models near the point equilib-

rium density Nt¼N*¼K for all t: those with h , 1 and

h . 1 being described as concave and convex,

respectively. Since the slope of these curves at the

fixed-point equilibrium density N* is�rh/K, H values in

the first or third quadrant of the r–h plane could be

expected to define models that fit the same data, if

clustered around N*, comparably well. Statistical theory

does not distinguish the realism of the first or third

quadrants in the r–h plane, providing only that one of

the modes will be the asymptotically correct estimate

(Severini 2000, Dennis et al. 2006). We focus only on

interior modes in the likelihood surface, those that are

away from the H boundaries rp¼ 0 and ro¼ 0. For the

theta-Ricker model, a simple solution to prevent multi-

modality in the likelihood function is to bound estimates

of H to the first quadrant of the r–h plane using

phenomenological arguments to reject a concave pgr

(Getz 1996), since these imply the strongest levels of

density dependence occur at the lowest densities rather

than at some critical density as the competitive impact

among individuals becomes particularly intense (e.g.,

when the total area of a relatively homogeneous region

divided by the number of individuals in the region has a

value less than the maximum area an individual requires

to meet all its needs, then the inverse of this is the critical

density).

We conducted a simulation experiment to quantify

the distribution of point estimates for the theta-Ricker

model by generating 300 stationary time series of length

20 (a generous sample size relative to many time series in

the GPDD; see the Appendix) using the stochastic log-

transformed theta-Ricker with process noise (TRPN)

model with parameter values r¼ loge(1.2)¼ 0.18, h¼ 2,

K ¼ 1, and rp ¼ 0.05. The deterministic trajectories

defined by the model at these parameters except with rp

¼ 0 are stable and constant. Allowing r and h to assume

any values, the best-fit TRPN model (Eq. A.1) fit to each

of the time series found ML estimates of H in both the

first and third quadrants of the r–h plane, with 44.3% of

them lying in the third (implausible) quadrant and an

additional 3% in the first quadrant also with concave

(0 , ĥ , 1) estimates of the pgr (Fig. 1B). Because of the

modeled pgr increase toward infinite as N goes to zero

for negative values of r and h (Fig. 1, Appendix: section

A1), we applied biological rationale to constrain r and h
to positive values. Reanalyzing these same time series

with these constraints results in ĥ � 1 for 42% of the

time series, with negatively correlated values of r̂ (Fig.

1C). Even in the absence of any process model

misspecification, observation error, or incorrect treat-

ment of stochastic effects, the best-fit model often

dramatically incorrectly estimates the shape of the pgr

for the generating parameters considered here. The

distribution of the point estimates in Fig. 1B, C

illustrates a subset of parameter space that could

provide similar likelihood values to the global maxi-

mum, given a particular population abundance time

series. We note that other generating parameters

producing deterministic oscillations in Nt would provide

much more accurate point estimates (Schaffer et al.

1986, Kendall 2001, Polansky et al. 2008), but the

absence of density-dependent induced oscillations may

be quite widespread (Sibly et al. 2007, but see our

Discussion), and is relevant for the GPDD data analyzed

here.

Before moving to some case studies, we discuss two

additional relevant issues besides observation error.

First, rather than multiple time series, typically one

has a single time series from which to establish

confidence in the best-fit model. Towards this end, we

can construct a joint profile likelihood surface, a general

model diagnostic tool proving useful in at least several

density-dependent investigations (Hilborn and Mangel

1997, de Valpine and Hilborn 2005, Dennis et al. 2006),

for the parameters controlling the important features of

the pgr model. We use the theta-Ricker model to

illustrate this procedure. By fixing w0¼ (r0, h0) at points
over a grid of values in the r–h plane, and then

maximizing the log-likelihood function in the remaining

parameter dimensions of H to obtain the maximum log-

likelihood value ‘(Ĥw0
) at each point in the grid, we

obtain a surface of joint profile log-likelihood values

‘(Ĥw0
) over the grid. By transforming this surface to Kw0

¼ 2[‘(Ĥ) � ‘(Ĥw0
)], we can use the likelihood ratio test

(LRT) to draw contour levels at quantiles from a chi-

square distribution v2
m, where m is the difference between

the number of parameters in H and w0, which will depict

the approximate boundaries for alternative models that

cannot be rejected at the corresponding P value (Meeker

and Escobar 1995). We choose this method to estimate

confidence intervals, rather than bootstrapping (Shum-

way and Stoffer 2000, Dennis et al. 2006) or data

cloning (Lele et al. 2007), other available frequentist

based methods for estimating confidence in parameter

estimates of state–space models, because it both

describes the likelihood surface geometry and represents

a parsimonious approach to the relatively simple models

that include only one type of stochasticity; a side-by-side

comparison of the different methods of statistical

inference under different levels of model complexity

and types of data could be a potentially illuminating

topic of further research.

Second, a priori insistence on anyoneparametricmodel

family is not always justified. Motivated by the point

estimation challenges facing the TRPN model and with

the knowledge that in some cases predictions may depend

on the choice of phenomenological model (Wood and

Thomas 1999), we also consider the log-transformed

Beverton-Holt model g(Nt)¼ r� loge(1þ (Nt/K )) and its

generalization g(Nt)¼r� loge(1þ(Nt/K )c ) (whereK is the

population density at which the effects of density

dependence are maximized) with the added shape

parameter c (which controls the form of density
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dependence) as an appropriate alternative model family

(Maynard Smith and Slatkin 1973, Bellows 1981, Getz

1996, Myers et al. 1999). Here, r is as above, c generalizes

the density-dependent pgr curve to allow both concave

and sigmoidal shapes, and the point equilibriumdensity is

at N* ¼ K(er � 1)1/c. The log-transformed generalized

Beverton-Holt with process noise (c-BHPN; Eq. A.2)

model is given by ln(Ntþ1)¼ ln(Nt)þr� ln(1þ (Nt/K )c )þ
tt. Although multimodality in the likelihood surface for

this model is expected to be rare (Appendix: section A1),

lack of information about r can also result in wildly

inaccurate best-fit pgr models (Polansky et al. 2008).

Finally, beforemoving on to our real data case studies, we

note that we use the abbreviation ALT to denote

alternative parameters chosen somewhat arbitrarily to

illustrate biologically plausible models that are statisti-

cally indistinguishable from best-fit parameters.

CASE STUDIES

We first analyze an extensively studied A. nisus

population time series from the GPDD for which

density-dependent effects have previously been estab-

lished (Newton andMarquiss 1986, Newton andRothery

1997). Two separate estimates of the shape parameter

with a TRPN model have been published for this

population: Sæther et al. (2002) reported ĥ¼ 2.57 (rp¼
60.69) using ML methods, with r̂ estimated indepen-

dently (data: 1975–1989), while Sibly et al. (2005)

reported ĥ¼�3.16 ((�12.6, 10) estimated 95% confidence

interval) using least-squares fitting on a grid of values

(data: 1972–1989). Here we focus on the TRPN model as

the starting place for a density-dependent investigation,

using the full data (1972–1989) available from the GPDD

(see Appendix: sections A2 and A4 for details on

additional analyses and other available data for this

population).

All three models, TRPN, c-BHPN, and theta-Ricker

state-space (TRSS), present joint profile likelihood

surfaces with extended ridges containing their best-fit

parameter estimates (Fig. 2A, C, E; Table 1). For both

the TRPN and TRSS models, likelihood surfaces are

also multimodal, with the global maximum occurring in

the third quadrant of the r–h plane (Table 1, Fig. 2A, C;

Fig. A3). The TRSS joint profile likelihood surface

(Fig. 2C) confirms that the multimodality and ridges are

not driven by a failure to accommodate observation

error (differences in how likelihood values are calculated

between the state–space model and the other models

prohibits comparing these values directly across models;

see Appendix: sections A2 and A4). Despite the single

mode in the likelihood surface of the c-BHPN model, it

does not appear to reduce the range of statistically

plausible pgr models.

Global models using theta-Ricker descriptions of

density dependence yield unreasonable best-fit estimates

of r (Table 1) and subsequent model predictions for

population trajectories when initial densities are low

(Table 2). We used Fig. 2A, C, E as guides to identify

ALT models that are both biologically and statistically

plausible, comparing likelihood differences using a LRT

(Tables 1 and 2). Fig. 2B, D, F illustrates how the best-

fit and ALT models exhibit similar behavior over the

range of the data but pronounced differences at low

population densities; examination of residuals fails to

reveal any evidence of model misspecification by either

best-fit or ALT models (Fig. A2). ALT models predict

substantially slower population recoveries than any of

the related best-fit models, as indicated by the positive

skewness of predicted values of N in contrast with the

negative sample skews of best-fit models for these

scenarios (Table 2).

Given that likelihood ridges are common to all

generalized models considered here, we explored the

broader applicability of our findings by fitting the TRPN

model to 25 additional time series for which concave pgr

has been reported (Sibly et al. 2005), including three

mammal, 10 bird, four fish, and eight insect species.

From the best-fit mode in the first quadrant of the r–h
plane, we located along the joint profile likelihood ridge

other supported values of r and h. Fig. 3 summarizes

these results, showing that for each concave best-fit pgr

curve there is a substantially different convex ALTmodel

which cannot be rejected statistically at the conventional

P value of 0.05, and usually the P values are on the order

of 0.3–0.5 (Appendix: Table A4, Fig. A3). Included in

these additional data sets is a time series for Columba

oenas, which has been analyzed by Ward (2006) using a

theta-Ricker model with observation error and a

Bayesian approach to parameter estimation. For this

data set, using either process noise only or observation

error only models the frequentist 0.95 r–h confidence

region determined by the LRT defines a ridge in the r–h
plane containing the best-fit model (Fig. A5), matching

by eye the 95% central posterior density interval of these

parameters in Fig. 1 of Ward (2006).

DISCUSSION

For general models of density dependence, the ML

point estimates derived from many simulated and real

data sets are essentially uninformative about the pgr at

densities where the flexibility of a generalized pgr model

results in substantial differences from a restricted model.

Thus, as in the case of linear and nonlinear regression,

prediction outside the range of observed data is ill advised

(but see Myers et al. [1999] for a study where such

prediction using linear models may be warranted).

Although the ‘‘true’’ form of the pgr of any population

may be restricted to the environmental context and lo-

cation from which the data were obtained (Krebs 2002),

without confident pgr estimates at low densities resulting

in, e.g., elliptical contour levels around a single maximum

in the joint profile likelihood surface of interest, the point

estimates (corresponding to concave pgr curves) for the

time series analyzed here offer little insight to the nature

of the ‘‘true’’ pgr curves beyond the range of observed

data.
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In summary, there are two specific points from this

research. First, as widely recognized, careful study of the

estimation properties of models using simulated data

can be an invaluable exercise before moving on to em-

pirical data. Second, although potentially computation-

ally expensive, calculating joint profile likelihood

surfaces is a useful diagnostic tool for obtaining greater

understanding from broad confidence intervals. While

FIG. 2. Joint profile likelihood surfaces of the parameters describing the pgr curve of the Accipiter nisus data set and the
corresponding predicted pgr curves for the flexible pgr models of Table 1: (A, B) the theta-Ricker process noise (TRPN) model;
(C, D) the theta-Ricker state–space (TRSS) model; (E, F) the generalized Beverton-Holt process noise (c-BHPN) model. The joint
profile log-likelihood values ‘(Ĥw0

) have been transformed to 2[‘(Ĥ) � ‘(Ĥw0
)]; for models with theta-Ricker type density

dependence we used the log-likelihood value from the mode in the first quadrant of the r–h plane. Global best-fit (gl) parameters
are located at plus signs, and ALT locations are at crosses. Local first-quadrant (lo) best-fit parameters for theta-Ricker type
density-dependent models lie beyond the x-axis limits in (A) and (B). Contour lines are at the 0.5 and 0.95 quantiles of a v2

2

distribution, corresponding to the closest and farthest lines from plus signs, respectively; for the TRSS model, the r–h axes are
within the 95% confidence region. The data [loge(Ntþ1/Nt) vs. Nt] are shown by circles.
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obtaining best-fit parameter estimates is a natural first

step in evaluating a model given data, a critical eye must

be kept on the biological plausibility of these models.

Using the full range of analytical tools, statistics can tell

us when a model is useful, and when it is not.

A direct consequence of this research regards the

conclusion by Sibly et al. (2005), based upon point

estimates of the TRPN h parameter allowed to take on

positive or negative values, that the relationship between

the pgr and population density is strongly concave for

many species, and hence populations spend most of their

time at or above their carrying capacity. This conclusion

is not supported statistically for any of the time series

considered here. Although the local and global best-fit

concave models may be appropriate for densities near

the carrying capacity, they predict biologically implau-

sible dynamics starting at low population densities

(Table 2), and applications of such models could prove

dangerous for conservation (Reynolds and Freckleton

2005, Staples and Taper 2006). The generality of both

Sibly et al. (2005), and Sibly et al. (2007) which begins

with ‘‘. . . 1780 different populations found to be

informative about the form of population regulation in

the analysis of (Sibly et al. 2005),’’ needs to be

reevaluated with analyses that at a minimum impose

realistic phenomenological constraints and recognize the

considerable uncertainty associated with point estimates

for many populations. As in all population studies, care

must be taken to both asses statistical certainty as

discussed here and in Doncaster (2006), and, whenever

TABLE 1. Results of different density-dependent models fit to the Accipiter nisus data set.

Model and likelihood location r N* h, c rp ro ‘(H) LRT P

RPN, best fit 1.13 34.30 0.08 18.61 0.54 (1)
TRPN, first quadrant best fit 635 34.20 0.00181 0.08 18.79
TRPN, third quadrant best fit �0.37 34.41 �3.09 0.08 19.07
TRPN, ALT 0.54 34.38 2.01 0.08 18.38 0.50 (2)
TRSS, interior first quadrant best fit 31.44 34.19 0.04 0.04 0.07 18.41
TRSS, interior third quadrant best fit �0.25 33.98 �4.83 0.05 0.06 18.49
TRSS, interior ALT 0.71 34.23 2.2 0.03 0.07 18.30 0.89 (2)
BHPN, best fit 9.15 34.18 0.08 18.63 0.57 (1)
c-BHPN, best fit 5.17 34.21 1.15 0.08 18.79
c-BHPN, ALT 0.50 34.37 2.86 0.08 18.44 0.71 (2)

Notes: Estimates of fixed-point equilibrium density N*, rather than K, are provided for comparison between theta-Ricker (TR)
and Beverton-Holt (BH) types of density dependence (for the Ricker and theta-logistic models, K is the population density for which
the pgr is zero; for the Beverton-Holt and generalized Beverton-Holt models, K is the population density at which the effects of
density dependence are maximized). Values of r, h, and c for the biologically plausible ALTmodels are chosen, not estimated (r is the
maximum of a pgr [per capita growth rate] that declines to 0 as population density increases to K . 0; h describes the form of the
density dependence; c is the parameter controlling the form of density dependence in the generalized Beverton-Holt model).
Likelihood ratio test (LRT) P values are used to compare the support of the first quadrant best-fit models against simpler process
(h¼1 or c¼1) or ALTmodels within family (process and stochastic structure), where the LRT statistic follows a v2

m with the degrees
of freedomm given in parentheses. Other variables are: rp, process noise standard deviation; ro, standard deviation for observation
error; and ‘(H), the maximum log-likelihood value. Model abbreviations are: RPN, Ricker (h¼1) with process noise; TRPN, theta-
Ricker with process noise; TRSS, theta-Ricker with process noise and observation error; BHPN, Beverton-Holt (c¼1) with process
noise; c-BHPN, generalized Beverton-Holt with process noise. Empty cells are those in which values are not estimated (because the
model does not contain that particular parameter) or computed (because it does not make sense to compare models with biologically
implausible parameters, i.e., best-fit models in the third quadrant of the r–h plane).

TABLE 2. Five-year prediction properties for 1000 simulated population time series using the models in Table 1 with different
initial population sizes Ninit.

Model and likelihood
surface location

Ninit ¼ 0.1N̂* Ninit ¼ N̂* Ninit ¼ 4N̂*

Time
(%)

Max.
population Skewness

Time
(%)

Max.
population Skewness

Time
(%)

Max.
population Skewness

RPN, best fit 15 45 �0.09 39 46 0.05 29 137 0.95
TRPN, first quadrant best fit 46 65 �0.62 41 45 0.04 53 137 1.05
TRPN, third quadrant best fit 80 4.4 3 10200 ud� 43 45 0.05 97 136 0.43
TRPN, ALT 0 36 0.38 38 47 0.05 20 138 1.07
TRSS, first quadrant best fit 44 63 �0.30 40 40 0.02 56 137 1.03
TRSS, third quadrant best fit 80 inf� ud� 43 43 0.05 100 136 0.26
TRSS, ALT 18 40 0.29 39 38 �0.004 20 137 1.07
BHPN, best fit 40 46 �1.00 41 46 0.06 60 137 1.07
c-BHPN, best fit 46 59 �0.73 40 46 0.06 53 137 1.05
c-BHPN, ALT 0 35 0.42 39 44 0.06 20 137 1.03

Notes: Numbers correspond to the percentage of time spent above estimated carrying capacity, maximum population size, and
mean sample skewness. Models are as in Table 1.

� Undefined.
� Infinite.
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possible, utilize other available information about the

broader ecological system to ensure that the relatively

simple models of Table 1 are appropriate (Getz and

Lloyd-Smith 2006, Peacock and Garshelis 2006).

Likelihood ridges have implications for several other

time series analysis approaches, where the common

thread is the likelihood function. Information theoretic

based methods of model comparison (Hurvich and Tsai

1991, Burnham and Anderson 2002, Bengtsson and

Cavanaugh 2006) have been developed for time series

models and represent a different paradigm from the

hypothesis tests used for illustration here. Nevertheless,

information criteria include maximum likelihoods for the

‘‘goodness-of-fit’’ term (the model complexity ‘‘penalty’’

remains unknown for nonlinear models), so all of our

considerations are likely to translate directly. Attempts

to incorporate model uncertainty using a set of candidate

models such as those from Table 1 and an information-

theoretic based weighting scheme to improve predictions

could be corrupted by biologically implausible models

with nontrivial weights due to the comparable maximum

likelihood values. Bayesian methods of data analysis also

rely on the same likelihood functions as the key in-

gredient to update prior parameter distributions (West

and Harrison 1989). Inferential statements about model

parameters based on the posterior distribution of H,

posterior predictive distributions of population states,

and Bayesian model averaging all rely on the likelihood

function to inform the model and subsequent predic-

tions. Thus, because the ridge in the likelihood surface

contains the best fitting model in realistic regions of

parameter space, a strictly Bayesian approach would not

be expected to improve the ambiguity about the ‘‘true’’

form of the pgr as a function of density, even after

assigning zero mass to prior parameter distributions in

regions describing implausible models (see also example

studies by Ward [2006] and Sæther et al. [2007]). These

cautions also apply to methods that utilize a Bayesian

approach en rout to obtaining ML estimates (e.g., de

Valpine 2004, Lele et al. 2007). Finally, Munch et al.

(2005) have shown how nonparametric methods can

offer a way to improve model performance in the absence

of knowledge about the phenomenological form of

density dependence. Given the improved realism of point

estimates by our best-fit model incorporating observa-

tion error, we suggest research combining nonparametric

and state–space models as useful direction for further

research.
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